Midterm Solution

1. Evaluate $\int_{C_e(0)} \frac{ze^z}{z-i} dz$ and $\int_{C_e(0)} \frac{ze^z}{z-e^2i} dz$.

Answer: Let $f(z) = ze^z$. Clearly, f is holomorphic on \mathbb{C} . Let U be an open region containing $C_e(0)$ and its interior and $U \subset C_{e^2}(0)$. (i) By Cauchy's integral formula, we have $\int_{C_e(0)} \frac{ze^z}{z-i} dz = f(i) = ie^i$. (ii) Since $\frac{ze^z}{z-e^{2i}}$ is holomorphic on U, therefore $\int_{C_{e^2}(0)} \frac{ze^z}{z-e^{2i}} dz = 0$.

2. Let $\overline{B_1(0)} \subset U$ and $f(z) = \sum_{n=0}^{\infty} a_n z^n \in Hol(U)$ and that $|f(z)| \leq 1$ for all $z \in C_1(0)$. Prove that $|a_n| \leq 1$ for all n.

Answer: Here we use Cauchy's inequalities, i.e.,

$$|\frac{f^{(n)}(0)}{n!}| \le ||f||,$$

where $||f|| = \sup_{z \in C_1(0)} |f(z)|$. It is given that $||f|| \le 1$. Again $a_n = \frac{f^{(n)}(0)}{n!}$ for all n. Therefore $|a_n| \le 1$ for all n.

3. Let $\overline{B_r(0)} \subset U$ and $f \in Hol(U)$. then prove that $\int_{C_r(0)} \frac{f'(\zeta)}{\zeta - z} d\zeta = \int_{C_r(0)} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta$ for $z \in B_r(0)$.

Answer: Since $f \in Hol(U)$, $f' \in Hol(U)$. Here we use Cauchy's integral formula: For $n \ge 0$

$$\frac{f^{(n)}(0)}{n!} = \frac{1}{2\pi i} \int_{C_r(0)} \frac{f'(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

for all z in the interior of $C_r(0)$. We have $\int_{C_r(0)} \frac{f'(\zeta)}{\zeta-z} d\zeta = \frac{2\pi i}{n!} f'(z)$ and $\int_{C_r(0)} \frac{f(\zeta)}{(\zeta-z)^2} d\zeta = \frac{2\pi i}{n!} f'(z)$. This proves that the two integrals are same.

4. Expand $\frac{1}{(1-z)^2}$ in a series of powers of z and find the radius of convergence.

Answer. Here $\frac{1}{(1-z)^2} = \sum_{n=0}^{\infty} nz^n$. Therefore the radius of convergence of the power series is 1 as $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$.

5. Let $f \in Hol(\mathbb{C})$. What can you conclude about f: (i) when $f(\mathbb{C} \cap B_1(0)$ is an empty set. (ii) when f, restricted to \mathbb{R} , is a 2π -periodic function.

Answer. Let $f \in Hol(\mathbb{C})$. If f is non constant entire function then by Picard's little theorem we have either $\mathbb{C} \setminus f(\mathbb{C})$ is empty or singleton. But $f(\mathbb{C}) \cap B_1(0)$ is empty so f must be constant on \mathbb{C} .

Let $g(z) = f(z + 2\pi)$ for $z \in \mathbb{C}$. Since $f \in Hol(\mathbb{C})$, $g \in Hol(\mathbb{C})$. It is given that f, restricted to \mathbb{R} , is a 2π -periodic function i.e., $f(x + 2\pi) = f(x)$ for $x \in \mathbb{R}$. Consider the set $\mathcal{D} = \{(x, 0) : g(x) = f(x + 2\pi) = f(x)\}$. Then $\mathcal{D} \subset \mathbb{C}$ and every point of \mathcal{D} is a limit point of \mathbb{C} . By Identity theorem we have g(z) = f(z) i.e. $f(z + 2\pi) = f(z)$ for all $z \in \mathbb{C}$.

6. Let $U \subset \mathbb{C}$ be a domain. Let $f, g \in Hol(U)$ and that $fg \equiv 0$. Prove that either $f \equiv 0$ or $g \equiv 0$.

Answer. Let $z_0 \in U$. Then $f(z_0)g(z_0) = 0$. This implies either $f(z_0) = 0$ or $g(z_0) = 0$. Suppose $g(z_0) \neq 0$. Then there exists r > 0 such that $g(z) \neq 0$ for all $z \in B_r(z_0)$. But f(z)g(z) = 0 for all $z \in B_r(z_0)$. Therefore f(z) = 0 for all $z \in B_r(z_0)$. Hence z_0 is a limit point of $\{z \in U : f(z) = 0\}$. Now using Identity theorem, we have $f \equiv 0$. This completes the proof.

7. Suppose f and g are continuous functions on $B_r(0)$ and $f, g \in Hol(B_r(0))$ and that $f(z) \neq 0$ and $g(z) \neq 0$ for all $z \in \overline{B_r(0)}$. If |f(z)| = |g(z)| for all $z \in C_r(0)$, then show that there exists a constant c such that |c| = 1 and f(z) = cg(z) for all $z \in B_r(0)$.

Answer: Consider $h(z) = \frac{f(z)}{g(z)}$ for all $z \in \overline{B_r(0)}$. Then h is continuous on $\overline{B_r(0)}$ and holomorphic on $B_r(0)$. By Maximum Modulus principle, h attains maximum on the boundary $C_r(0)$. Here |h(z)| = 1 on $C_r(0)$. Similarly $\frac{1}{h}$ is defined on $\overline{B_r(0)}$. Applying Maximum Modulus principle on $\frac{1}{h}$, we have $|\frac{1}{h(z)}| = 1$ on $C_r(0)$. h attains both maximum and minimum on the boundary and hence h must be constant c with |c| = 1. Therefore f(z) = cg(z) for all $z \in B_r(0)$.

8. Let $\Omega \subset R^2$ be an open set and $u, v \in C^1(\Omega)$. Assume that u and v satisfy the Cauchy-Riemann equations in Ω . Assume moreover that $u(x,y)^2 + v(x,y)^2 \neq 0$ for all $(x,y) \in \Omega$. Show that the function

$$\frac{uu_x + vv_x}{u^2 + v^2}$$

is harmonic in Ω .

Answer. Since u and v satisfy the Cauchy-Riemann equations i.e. $u_x = v_y$ and $u_y = -v_x$ in Ω , we have $u_{xx} + u_{yy} = 0$ and $v_{xx} + v_{yy} = 0$. Therefore u, v are harmonic in Ω . Consider $f = u^2 + v^2$ and $h = \frac{uu_x + vv_x}{u^2 + v^2}$.

$$h = \frac{1}{2} \frac{f_x}{f}.$$

Now by easy calculation, we have $h_{xx} + h_{yy} = 0$. Thus h is harmonic in Ω .

9. Prove that

$$f(z) := \int_0^1 \frac{\sin zt}{t} dt \qquad (z \in \mathbb{C}),$$

is an entire function.

Answer: The series expansion of

$$\frac{\sin zt}{t} = \frac{1}{t} \left[zt - \frac{(zt)^3}{3!} + \frac{(zt)^5}{5!} - \dots \right]$$
$$= \left[z - \frac{z^3 t^2}{3!} + \frac{z^5 t^4}{5!} - \dots \right].$$

Since $\frac{sinzt}{t}$ is again a power series with radius of convergence ∞ , term by term integration we have

$$f(z) = \int_0^1 \frac{\sin zt}{t} dt = \left[z - \frac{z^3}{3!3} + \frac{z^5}{5!5} - \dots\right]$$
$$= \sum_{n=0}^\infty a_n z^n,$$

where $a_{2n+1} = \frac{1}{(2n+1)!(2n+1)}$ and $a_{2n} = 0$ for $n \ge 0$.

Clearly $\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = 0$. Therefore f(z) is an entire function on \mathbb{C} .