1. Evaluate $\int_{C_{e}(0)} \frac{z e^{z}}{z-i} d z$ and $\int_{C_{e}(0)} \frac{z e^{z}}{z-e^{2} i} d z$.

Answer: Let $f(z)=z e^{z}$. Clearly, f is holomorphic on \mathbb{C}. Let U be an open region containing $C_{e}(0)$ and its interior and $U \subset C_{e^{2}}(0)$.
(i) By Cauchy's integral formula, we have $\int_{C_{e}(0)} \frac{z e^{z}}{z-i} d z=f(i)=i e^{i}$.
(ii) Since $\frac{z e^{z}}{z-e^{2} i}$ is holomorphic on U, therefore $\int_{C_{e^{2}}(0)} \frac{z e^{z}}{z-e^{2} i} d z=0$.
2. Let $\overline{B_{1}(0)} \subset U$ and $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in H o l(U)$ and that $|f(z)| \leq 1$ for all $z \in C_{1}(0)$. Prove that $\left|a_{n}\right| \leq 1$ for all n.

Answer: Here we use Cauchy's inequalities, i.e.,

$$
\left|\frac{f^{(n)}(0)}{n!}\right| \leq\|f\|,
$$

where $\|f\|=\sup _{z \in C_{1}(0)}|f(z)|$. It is given that $\|f\| \leq 1$. Again $a_{n}=\frac{f^{(n)}(0)}{n!}$ for all n. Therefore $\left|a_{n}\right| \leq 1$ for all n.
3. Let $\overline{B_{r}(0)} \subset U$ and $f \in \operatorname{Hol}(U)$. then prove that $\int_{C_{r}(0)} \frac{f^{\prime}(\zeta)}{\zeta-z} d \zeta=\int_{C_{r}(0)} \frac{f(\zeta)}{(\zeta-z)^{2}} d \zeta$ for $z \in B_{r}(0)$.

Answer: Since $f \in \operatorname{Hol}(U), f^{\prime} \in \operatorname{Hol}(U)$. Here we use Cauchy's integral formula: For $n \geq 0$

$$
\frac{f^{(n)}(0)}{n!}=\frac{1}{2 \pi i} \int_{C_{r}(0)} \frac{f^{\prime}(\zeta)}{(\zeta-z)^{n+1}} d \zeta
$$

for all z in the interior of $C_{r}(0)$.
We have $\int_{C_{r}(0)} \frac{f^{\prime}(\zeta)}{\zeta-z} d \zeta=\frac{2 \pi i}{n!} f^{\prime}(z)$ and $\int_{C_{r}(0)} \frac{f(\zeta)}{(\zeta-z)^{2}} d \zeta=\frac{2 \pi i}{n!} f^{\prime}(z)$.
This proves that the two integrals are same.
4. Expand $\frac{1}{(1-z)^{2}}$ in a series of powers of z and find the radius of convergence.

Answer. Here $\frac{1}{(1-z)^{2}}=\sum_{n=0}^{\infty} n z^{n}$. Therefore the radius of convergence of the power series is 1 as $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$.
5. Let $f \in \operatorname{Hol}(\mathbb{C})$. What can you conclude about f : (i) when $f\left(\mathbb{C} \cap B_{1}(0)\right.$ is an empty set. (ii) when f, restricted to \mathbb{R}, is a 2π-periodic function.

Answer. Let $f \in \operatorname{Hol}(\mathbb{C})$. If f is non constant entire function then by Picard's little theorem we have either $\mathbb{C} \backslash f(\mathbb{C})$ is empty or singleton. But $f(\mathbb{C}) \cap B_{1}(0)$ is empty so f must be constant on \mathbb{C}.

Let $g(z)=f(z+2 \pi)$ for $z \in \mathbb{C}$. Since $f \in \operatorname{Hol}(\mathbb{C}), g \in \operatorname{Hol}(\mathbb{C})$. It is given that f, restricted to \mathbb{R}, is a 2π-periodic function i.e., $f(x+2 \pi)=f(x)$ for $x \in \mathbb{R}$. Consider the set $\mathcal{D}=\{(x, 0)$: $g(x)=f(x+2 \pi)=f(x)\}$. Then $\mathcal{D} \subset \mathbb{C}$ and every point of \mathcal{D} is a limit point of \mathbb{C}. By Identity theorem we have $g(z)=f(z)$ i.e. $f(z+2 \pi)=f(z)$ for all $z \in \mathbb{C}$.
6. Let $U \subset \mathbb{C}$ be a domain. Let $f, g \in \operatorname{Hol}(U)$ and that $f g \equiv 0$. Prove that either $f \equiv 0$ or $g \equiv 0$.

Answer. Let $z_{0} \in U$. Then $f\left(z_{0}\right) g\left(z_{0}\right)=0$. This implies either $f\left(z_{0}\right)=0$ or $g\left(z_{0}\right)=0$. Suppose $g\left(z_{0}\right) \neq 0$. Then there exists $r>0$ such that $g(z) \neq 0$ for all $z \in B_{r}\left(z_{0}\right)$. But $f(z) g(z)=0$ for all $z \in B_{r}\left(z_{0}\right)$. Therefore $f(z)=0$ for all $z \in B_{r}\left(z_{0}\right)$. Hence z_{0} is a limit point of $\{z \in U: f(z)=0\}$. Now using Identity theorem, we have $f \equiv 0$. This completes the proof.
7. Suppose f and g are continuous functions on $\overline{B_{r}(0)}$ and $f, g \in \operatorname{Hol}\left(B_{r}(0)\right)$ and that $f(z) \neq 0$ and $g(z) \neq 0$ for all $z \in \overline{B_{r}(0)}$. If $|f(z)|=|g(z)|$ for all $z \in C_{r}(0)$, then show that there exists a constant c such that $|c|=1$ and $f(z)=c g(z)$ for all $z \in B_{r}(0)$.

Answer: Consider $h(z)=\frac{f(z)}{g(z)}$ for all $z \in \overline{B_{r}(0)}$. Then h is continuous on $\overline{B_{r}(0)}$ and holomorphic on $B_{r}(0)$. By Maximum Modulus principle, h attains maximum on the boundary $C_{r}(0)$. Here $|h(z)|=1$ on $C_{r}(0)$. Similarly $\frac{1}{h}$ is defined on $\overline{B_{r}(0)}$. Applying Maximum Modulus principle on $\frac{1}{h}$, we have $\left|\frac{1}{h(z)}\right|=1$ on $C_{r}(0)$. h attains both maximum and minimum on the boundary and hence h must be constant c with $|c|=1$. Therefore $f(z)=c g(z)$ for all $z \in B_{r}(0)$.
8. Let $\Omega \subset R^{2}$ be an open set and $u, v \in C^{1}(\Omega)$. Assume that u and v satisfy the CauchyRiemann equations in Ω. Assume moreover that $u(x, y)^{2}+v(x, y)^{2} \neq 0$ for all $(x, y) \in \Omega$. Show that the function

$$
\frac{u u_{x}+v v_{x}}{u^{2}+v^{2}}
$$

is harmonic in Ω.

Answer. Since u and v satisfy the Cauchy-Riemann equations i.e. $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ in Ω, we have $u_{x x}+u_{y y}=0$ and $v_{x x}+v_{y y}=0$. Therefore u, v are harmonic in Ω. Consider $f=u^{2}+v^{2}$ and $h=\frac{u u_{x}+v v_{x}}{u^{2}+v^{2}}$.

$$
h=\frac{1}{2} \frac{f_{x}}{f} .
$$

Now by easy calculation, we have $h_{x x}+h_{y y}=0$. Thus h is harmonic in Ω.
9.Prove that

$$
f(z):=\int_{0}^{1} \frac{\sin z t}{t} d t \quad(z \in \mathbb{C})
$$

is an entire function.
Answer: The series expansion of

$$
\begin{aligned}
\frac{\sin z t}{t} & =\frac{1}{t}\left[z t-\frac{(z t)^{3}}{3!}+\frac{(z t)^{5}}{5!}-\ldots\right] \\
& =\left[z-\frac{z^{3} t^{2}}{3!}+\frac{z^{5} t^{4}}{5!}-\ldots\right]
\end{aligned}
$$

Since $\frac{\operatorname{sinzt}}{t}$ is again a power series with radius of convergence ∞, term by term integration we have

$$
\begin{aligned}
f(z)=\int_{0}^{1} \frac{\sin z t}{t} d t & =\left[z-\frac{z^{3}}{3!3}+\frac{z^{5}}{5!5}-\ldots\right] \\
& =\sum_{n=0}^{\infty} a_{n} z^{n}
\end{aligned}
$$

where $a_{2 n+1}=\frac{1}{(2 n+1)!(2 n+1)}$ and $a_{2 n}=0$ for $n \geq 0$.
Clearly $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=0$. Therefore $f(z)$ is an entire function on \mathbb{C}.

